Bodensteiner Medical Research
| |
|
| | | |
 
 


Welcome to Thrombo.Info
by Dr Bode

The Happy Heart

Tick-tock, tick-tock
The happy heart beats like a clock.

 

Do you ever lie awake at night and wonder what makes the healthy heart flip and flop like a fish out of water? Suddenly the heart flutters like a humming bird and then slows down with powerful pounding palpitations that cause hot flashes or night sweats.

Doctors observe patients with fast fluttering pulses followed by slow strong palpitations and call this condition the "sick sinus syndrome". These patients suffer brain fog, confusion, weakness, and light-headed dizzy spells.

No one has any idea what causes the heart to beat fast or slow; and not much really matters to anyone unless it changes his or her financial condition or romantic relationships. No one cares too much about the "sick sinus syndrome" until he or she ends up in the ICU with a fast / slow heart rate following a long night of drinking and dancing coupled with lack of sleep.

The purpose of this website is to share new insights about the heart rhythm; and explain how blood clots change the heart rhythm by interfering with blood flow through the heart valves.

Thrombo Dextro Cardia

Doctor, doctor tell me please.

What makes me cough or why I sneeze?

When I walk or roller skate,

My hearts starts to palpitate.

It hops around with a flip and a flop.

I pray to God it doesn't STOP!

 

In 2005 Dr Bode became sick with phlebitis in his right leg following inguinal hernia surgery, and someone recommended that he use a venous compression sleeve to squeeze his sore leg. Compression of the leg improves venous blood flow.

When Dr Bode squeezed his sore leg, he developed palpitations that were powerful flip-flop sensations inside the chest and these were mixed with fluttering jugular pulsations in his neck. Dr Bode used his stethoscope and listened to soft systolic murmurs at the pulmonary valve when his heart went flip and flop with palpitations. It was easy to hear that something caused murmurs at the valve when the compression device squeezed his sore leg full of clots. Turning off the compression sleeve stopped the palpitations and murmurs, so it was easy for Dr Bode to "see" that blood clots from his sore leg were migrating into the heart, where they caused palpitations as they passed through the heart valves.

Next, Dr Bode attached a portable pulse oximeter to his finger, which showed patterns of bradycardia during flip-flop palpitations that were followed by oxygen desaturation events. His wife is a nurse and she took him to the recovery room where the ECG (electrocardiogram) showed a pattern called ventricular bigeminy during flip-flop palpitations.

Dr Bode consulted medical colleagues, but no one has any idea that blood clots cause palpitations called premature ventricular contractions (PVC) or that blood clots cause oxygen desaturation events. Experts from Stanford University Medical School stated that there are no known association between arrhythmias and pulmonary dysfunction and another UCSF cardiologist said that he had absolutely no idea what causes PVC or why the heart skips a beat!

The sad situation was an idiopathic syndrome in 2005, and paradoxical arrhythmias with desaturations during bigeminy continue to mystify the medical profession in 2016. 

Blood clots seem to change blood flow through the heart valves, which changes the rhythm of the ECG. However, no one has established a connection between blood clots and premature waves of the ECG. No one can explain how cell depolarizations and repolarizations generate electric waves of the ECG, because these events move at the speed of light which blurs the evidence.

Dr Bode used his anesthesia skills to study sick and healthy patients. He recorded hundreds of ECG rhythms and compared them to simultaneous pulse oximeter data, which measures the pulse rate, pulse rhythm, oxygen hemoglobin saturation, and carbon monoxide hemoglobin saturation.

Dr Bode studied patients at rest, during treadmill exercise, and during sequential venous leg compression, and videotaped several projects. The research produced some very interesting observations.

Leg compression of sore legs with blood clots caused repeating patterns of skipped heartbeats called PVC followed by delayed oxygen desaturation events. Furthermore, sore extremities with DVT had elevated carbon monoxide hemoglobin (carboxyhemoglobin) saturation above 10%. In addition there is a direct connection between altered blood flow and altered ECG rhythm.

It appears that cardiac contractions / blood flow generate electric potentials inside the heart that dissipate and create the waves of the ECG in the same way that swirling winds rub against water droplets inside dark clouds in the sky that generate electric potentials that discharge to the ground as lightning bolts.

Leg compression of healthy patients caused no ECG changes, no desaturation events, and the carboxyhemoglobin levels of the extremities were 0 – 1%.

Compression of sore legs with blood clots altered the ECG rhythm and oxygen saturation, however

  • There are no accepted relationships between blood clots, arrhythmias, or desaturations,
  • No one has any idea what causes the sick sinus syndrome,
  • No one can explain slow strong flip-flop palpitations,
  • No one can explain fast weak fluttering jugular palpitations,
  • No one has any idea why sore legs have elevated carboxyhemoglobin saturation,
  • No one seems to understand that cardiac contractions / blood friction generate electric waves,
  • No one can explain PVC, Q waves, or the long QT of the ECG.

The ECG / pulse oximetry evidence demonstrates a direct relationship between carboxyhemoglobin (SpCO) saturation and blood clots; and a relationship between blood flow / cardiac contractions and the electric potentials of the electrocardiogram (ECG). Furthermore, there are connections between blood clots, heart valves, arrhythmias, palpitations and sudden unexpected death syndromes.

Dr Bode designed a thrombo theory to explain how compression of sore legs induces palpitations with premature cardiac contractions that make up the tachy-brady rhythm of the sick sinus syndrome.

Thrombophysiology by Dr Bode

Anaerobic metabolism produces lactic acid, which causes venous blood to transform into purple gel, composed of water, proteins, platelets, and red blood cells. This soft gel called detritus forms an outer membrane and becomes a blood clot called a thrombus, which adheres to the inner walls of veins inside muscles and causes phlebitis.

Dr Rudolf Virchow discovered around 1859 during autopsy that blood clots in the lungs were the same as blood clots in the legs. He theorized that pieces of clot in the legs broke loose, and moved through venous circulation into the lungs. Virchow called this process embolia.

Blood clots have a life cycle that starts inside muscles as deep venous thromboses (DVT), which migrate out of sore legs during walking and become venous thromboembolisms (VTE). These circulate through heart valves, move into the pulmonary artery, and stop in the lungs, where they become pulmonary embolisms (PE).

Venous blood clots cause pathology and change vital signs.

First, DVT weaken sore muscles, which become warm, swollen, and red with increased carboxyhemoglobin in the toes, which is a biomarker of venous vascular congestion and hemostasis.

Next, VTE inside the heart (thrombo dextrocardia) cause arrhythmias and palpitations. VTE at the tricuspid valve cause premature atrial contractions (PAC), with fluttering jugular palpitations called pulsus reversus; and VTE at the pulmonary valve cause premature ventricular contractions (PVC) with pulsus interruptus (skipped heartbeat) and flip-flop palpitations. Thrombo dextrocardia causes the tachy-brady rhythm of the sick sinus syndrome; and furthermore, consecutive skipped heartbeats cause fainting, anoxic convulsions, and sudden death syndromes.

Next, VTE circulate into the pulmonary artery and squeeze the esophagus. Pulsating clots cause nausea, burping, difficulty talking or swallowing; and burping while asleep causes gastro esophageal reflux (GERD).

Finally, VTE flow into the lungs and become pulmonary embolisms (PE). Detritus in alveoli causes exercise-induced asthma; and prevents the absorption of oxygen and the exhalation of warm moist vapor full of carbon dioxide. Pulmonary malfunction causes desaturation, hypercapnea, and hyperthermia, which may lead to panic attacks, narcolepsy, hot flash fevers, night sweats, and anaphylactic suffocation.

The Life Cycle of Blood Clots is full of arrhythmias and idiopathic syndromes

  1. First, DVT (deep venous thrombosis) usually form inside muscles and cause inflammation. Muscles become sore, swollen, weak, warm, and red. Walking causes pieces of DVT to break loose and migrate into venous circulation, where they become venous thromboembolism (VTE).
  2. VTE move into the right atrium of the heart, where they interfere with blood flow at the tricuspid heart valve, which causes premature atrial contraction (PAC), and the obstructed valve forces blood to regurgitate upwards into the jugular vein during fast atrial contractions called atrial flutter. This  process is thrombodextracardia pulsus reversus, and the fast heart rate is thrombotachycardia.
  3. Next, VTE move into the right ventricle and obstruct blood flow through the pulmonary valve, which causes a premature ventricular contraction (PVC). PVC delays ventricular blood flow out of the heart, which changes the QRS of the ECG. The heart skips a beat (pulse) and this process is called thrombodextracardia pulsus interruptus, and the slow heartbeat is thrombobradycardia.
  4. VTE move into the pulmonary artery, and squeeze around the esophagus, which is located in front of the spine and behind the heart and pulmonary artery. Pulsating clots inside the pulmonary artery physically compress and irritate the esophagus, which causes nausea, burping, difficulty talking or swallowing. At night, burping while asleep causes gastro esophageal reflux (GERD).
  5. Finally, VTE moves into pulmonary alveoli and becomes pulmonary embolism (PE). Detritus  interferes with respiration and causes "circulatory" asthma. Furthermore, detritus and PE prevent the absorption of oxygen or the exhalation of warm moist vapor full of carbon dioxide, which causes oxygen desaturation, hypercapnea, and hyperthermia. These cause panic attacks, fever, narcolepsy, hot flashes, night sweats, and rare anaphylactic suffocation.

Clots cause bigeminy with pulse deficits, palpitations, and more

 

 

 

 

 

It is theorized that compression of sore legs pumps DVT that are the size and shape of a golf pencil into venous circulation. These soft clots look like small purple worms, which migrate into the heart where they alter blood flow at the pulmonary valve and cause an ECG pattern called bigeminy.

Physiology has several processes going on at the same time during one second of time during the heartbeat, and it is important to take time to focus attention on one thing and then go to the next.

First, focus on blood flow and electric potentials, which make up the waves of the electrocardiogram (ECG).

It is theorized that cardiac contractions / blood flow friction generates electic potentials that make up the normal and abnormal waves of the electrocardiogram (ECG). It is theorized that clots change the cardiac contractions / blood flow at the heart valves. 

VTE at the pulmonary valve reduce blood flow, which stimulates a premature ventricular contraction. The right ventricle outflow valve closes down on the clot and the right ventricle develops a rotating isometric contraction that alters the QRS electric potentials of the heartbeat. The ECG pattern changes from a narrow wave called NSR (normal sinus rhythm) into a tall wide bifid QRS wave called PVC (premature ventricular contraction).

Second focus on the pressure inside the right ventricle which triggers a cardiac reflex.

As the clot goes through the pulmonary valve, the clots reduces blood flow out of the right ventricle which causes a premature rise of pressure inside the ventricle, which triggers a premature contraction of the right ventricle, which prevents fatal distention of the ventricle, which causes fibrillation.

Next focus on the muscular contraction during PVC. The premature contraction causes the valve to close and grip the nose of the clot as the right ventricle develops an isometric rotating contraction that ruptures the neck of the sac sack that is held by the closed valve. The clot ruptures, which releases sticky detritus and decompresses the clot and reopens the pulmonary valve, which allows a normal sinus rhythm (NSR) heartbeat that pumps extra blood, clot sac, and detritus into the pulmonary artery.

Refocus on the clot. Because the clot is long, the trailing part of the clot re-obstructs the valve, which causes a second PVC. The second PVC causes the valve to grip the middle of the clot, which causes a second rotating isometric contraction which extends the rupture of the clot all the way to its tail, which decompresses the clot and reopens the valve. Another normal sinus rhythm heartbeat ( NSR) pumps blood plus the empty clot sac out of the valve into the pulmonary artery.

The ECG pattern is NSR / PVC / NSR / PVC / NSR and the heartbeat skips every other pulse during bigeminy because of isometric non-perfusing PVC as the clot obstructs the pulmonary valve.

Next focus on blood flow sounds of the heart during ventricular bigeminy. If you listen to the heart with a stethoscope during bigeminy, you can hear a soft variable grade I - II systolic murmur at the pulmonary valve as the clot passes through the valve.

Next, focus on detritus, which is released from the clot rupture and migrates into the alveoli, where the detritus gums up the capillaries, which temporarily prevents the absorption of oxygen during inspiration and stops the exhalation of warm moist vapor full of carbon dioxide during exhalation.

Pulmonary detritus causes a delayed (ten to twenty seconds) oxygen desaturation event. It also causes hypercapnea (elelvated carbon dioxide) and hyperthermia (fever). Elevated carbon dioxide causes narcolepsy and hyperthermia stimulates vasodilatation and sweating (hot flash).

Finally think about sensations of palpitations. During bigeminy, the right ventricle enlarges during its rotating isometric contraction and the left ventricle decompresses by pumping out a small volume of blood. The heart "flips" to the left during PVC and flops back to the right after the clot ruptures which allows normal sinus rhythm (NSR) to pump out the ruptured sac plus extra blood.

The heart repeats its "flip-flop" process during the second PVC, which is followed by a second normal sinus contraction (NSR). Powerful pounding sensations occur because the ventricle pumps with more force to expel clot debris and extra blood following PVC.

Next focus on the pulse rate. The pulse slows down as the heart skips every other pulse during bigeminy so that the pulse rate during thrombobradycardia is one half of the speed of normal sinus rhythm.

Patients press the button on the holter monitor during bigeminy and write down "flip-flop" palpitation on the record sheet because clots cause strong rotating isometric contractions that are followed by extra strong beats that are needed to expel clot, debris and extra blood out of the right ventricle.

The Gestalt is the whole picture

It takes time to understand how associated events are connected, so focus on one thing and then another, and take time to "see" the whole picture.

Gradually, "see" how an elongated soft purple thrombus initially sticks its nose inside the pulmonary valve opening of the outflow tract of the right ventricle. The clot causes PVC that is followed by a rotating isometric contraction of the right ventricle that ruptures the neck of the clot, which release detritus and deompresses the upper part of the clot sac. A normal sinus contraction pumps the decompressed sac through the valve. Next, the remaining clot sac full of bloody glue re-obstructs the valve causing a second PVC with another rotating isometric contract, which extends the rupture of the clot sac all the way to its tail, which releases more sticky purple detritus. This is followed by a normal sinus rhythm contraction, which pumps the remaining clot sac into the lungs. The bloody glue gums up alveoli, which causes an oxygen desaturation event and stops the exhalation of warm moist vapor, which causes narcolepsy.

Thrombophysiology is complicated, so take time to "see" the Gestalt and find joy in your journey as you learn how blood clots cause palpitations with sleepy spells.  

A New Interpretation of the Electrocardiogram:

The heart is composed of two pumps intimately connected like Siamese twins.

  • Two pumps have six connected pumping parts.
  • These parts include two atria, two ventricles, and two great arteries.
  • Four one-way reciprocating valves connect six pumping parts.

Focus on the ventricles, heart valves, and blood flow as the heart contracts each second of time.

  • Three connected pairs of pumps have sequential synchronized rhythmic contractions.
  • First: two atria contract together and fill up the ventricles.
  • Next: two ventricles contract together and fill up two great arteries.
  • Last: two great arteries contract and pump blood away from the heart.

Dr. Einthoven discovered in 1903 that the heartbeat generates electricity. Electrophysiologists teach that the cumulative effects of millions of cardiac cell depolarization and repolarization events generate the electricity of the electrocardiogram (ECG), which has three spikes or electric potentials called the P, QRS, and T waves.

  • The heartbeat electrocardiogram (ECG) has three waves: P, QRS, and T.
  • Action potential depolarization / repolarization explain ECG physiology.
  • However, electric action potentials move at the speed of light, which blurs the evidence.

There is an alternative way to explain the different electric potentials of the ECG. Blood contains water and srrong cardiac muscle contractions cause fast flowing blood which generate friction electricity inside the heart just like swirling air against water droplets in dark storm clouds in the sky create friction electric potentials that discharge to the ground as bolts of lightning.

Dr Bode and Dr McEdwards believe that blood flow from cardiac contractions generate electric potentials inside the heart in the same way that air flow against water droplets in the clouds create lightning.

Sequential coordinated contractions by different parts of the heart generate distinct electric potentials that dissipate and create electric waves of the electrocardiogram (ECG) during each heartbeat, which takes about one second of time.

First, two atria contract together and create the P wave.

Next, two ventricles contract together and create the QRS wave.

Last, the aorta and pulmonary artery contract together and pump blood away from the heart, which creates the T wave.

Blood flow generates the electric waves of the ECG and blood clots alter the blood flow, which changes the ECG pattern.

Blood flow controls the beat of the healthy happy heart. The "heartbeat" is not under control of the SA node, AV node and conduction fibers; however, the conduction system initiates coordinated contractions of the atria, and facilitates simultaneous "reverse peristaltic" contractions of the ventricles.

The bottom (apex) of the ventricles contract at the start of systole, as the heart pumps blood "up" towards the aortic and pulmonary valves, and pathological Q waves are caused by the downward outward bulge of the apex of the ventricles at the start of systole. This is "takotsubo" of the broken heart syndrome.

  • Blood flow friction electrical potentials explain ECG waves and "reentry" circuits.
  • Cardiac contractions / hemodynamic electric potentials explain ECG physiology.
  • Depolarization and repolarization theories need revision.

Thrombo Theory Questions & Answers:

  • What makes the heart skip a beat? VTE at the pulmonary valve causes PVC with pulse deficits.
  • How does a blood clot (thrombus) cause the heart to skip a beat? It interferes with blood flow through the pulmonary valve.
  • What causes blood to form clots? Abnormal metabolism produces acid, which denatures protein, which causes blood to coagulate.
  • Why does abnormal anaerobic (hypoxic) metabolism make lactic acid? Metabolism without oxygen produces lactic acid; and Dr Pasteur made this discovery when he studied germ metabolism of milk.
  • Why does cancer cause clots? Abnormal cancer cell metabolism produces lactic acid; and Dr Otto Warburg made this discovery when he studied cancer cell glucose metabolism.
  • Why do runners get clots? Anaerobic muscle metabolism produces lactic acid; and Dr Otto Meyerhof made this discovery.
  • How does lactic acid activate the blood clotting mechanism? Acid denature protein in the blood, which becomes like velcro, which causes red blood cells to coagulate with platelets and form clots.
  • What makes blood clots migrate (embolize) into heart valves? Exercise or walking squeezes clots out of sore veins (DVT) into circulation that goes into the heart.
  • What happens to the heart rhythm as clots pass through different heart valves? VTE at the tricuspid valve causes tachcardia and VTE at the pulmonary valve cause bradycardia.
  • Do blood clots cause fluttering or flip flop palpitations? Yes.
  • Why do arrhythmias cause low blood pressure with lightheaded dizzy spells? VTE reduces the ejection fraction, which reduces blood pressure and causes lightheaded dizzy spells.
  • Does partly clotted blood called detritus interfere with breathing? Yes.
  • How does bloody debris (detritus) cause exercise-induced asthma? Detritus adds liquid glue into the lungs which causes temporary swelling and reduces air flow into tiny alveoli.
  • How do blood clots cause coughing, nausea, gagging and sneezing? VTE inside the pulmonary artery accumulate at the junction where the artery passes in front of the spine. The esophagus touches the back of the heart and pulsating VTE in the artery choke the esophagus causing difficulty swallowing or talking, coughing, gagging, nausea, and sneezing.
  • Do blood clots or detritus cause panic attacks or internal suffocation? Yes.
  • Do blood clots cause pulseless fainting? Yes.
  • How do blood clots cause epileptic seizures? VTE at the pulmonary artery stops the flow of blood into the brain and lungs, which triggers an anoxic convulsion.
  • How do blood clots cause sudden thrombocardiac arrest? VTE obstruct the pulmonary valve, which stops cardiac output.
  • How does CPR reanimate someone with cardiac arrest without defibrillation? CPR expels clot out of the obstructed valve, which reopens blood flow into the brain and lungs, which reverses acidsosis and reanimates the person suffering a thrombocardiac arrest.

Thrombo Associated Diseases:

  • Cancer → lactic acid → blood clots (Warburg effect)
  • Carbon monoxide poisoning: night time hypoxemia → carboxyhemoglobinemia
  • Chronic Fatigue Syndrome
  • Congestive heart failure: right heart failure, valve malfunction, low ejection fraction
  • Exercise-induced asthma: pulmonary embolism (PE) of detritus
  • Infection: anaerobic germ metabolism muscle: glucose → lactic acid → blood clots
  • Injuries: foot, leg, knee, or hip injury → blood clots
  • Gastro esophageal reflux disease (GERD): emboli in pulmonary artery compress  the esophagus between heart and vertebra, stimulates burping during sleep → GERD 
  • Headaches: pulmonary detritus ↓ water exhalation → brain edema, headache
  • Insomnia: PE at tricuspid valve → thrombotachycardia → sleep arousal 
  • Macular degeneration: micro emboli
  • Malignant hyperthermia: PE → atelectasis, fever, VTE arrhythmias
  • Migraine headaches
  • Narcolepsy: PE detritus → ↓ exhalation of CO2 → hypercapnea → CO2 narcosis
  • Panic attacks: PE of detritus, desaturation, dyspnea
  • Peripheral neuropathy: venous vascular acidosis → neuropathy, restless leg
  • Pleurisy: PE into alveoli causes sharp ischemic pain
  • Pre-menstrual syndrome: PE of detritus, hot flashes, headache (edema), mild fever
  • Pyriformis syndrome: compartment syndrome, venous acidosis
  • Seizures: VTE at pulmonary valve, sudden hypoxia, convulsions perform CPR
  • Sick Sinus Syndrome: VTE at tricuspid and pulmonary valves
  • Sleep apnea: PE detritus → internal hypercapnea with central CNS depression
  • Syncope: short runs of continuous skipped beats, VTE at pulmonary valve
  • Tinnitus: emboli of detritus into sensitive area of inner ear

Thrombo Symptoms

  • Anxiety, panic attacks
  • Brain Fog
  • Choking
  • Coughing
  • Confusion
  • Depression
  • Dizzy spells
  • Dyspnea (short of breath)
  • Exercise-induced asthma
  • Fainting
  • Fatigue
  • Fear of sudden death
  • Fever (fever seizures, night sweats, hot flashes)
  • Fluttering fast palpitations
  • Flip-flop pounding strong palpitations
  • Gagging
  • Headaches
  • Hot flashes
  • Insomnia with fast racing heartbeats
  • Irregular pulse
  • Irritability
  • Phlebitis
  • Premature beats
  • Light-headed sensations
  • Muscular dystrophy
  • Nausea
  • Night sweats
  • Palpitations
  • Panic Attacks
  • Racing heartbeat
  • Restless leg
  • Seizures / grand mal unconscious convulsions
  • Shortness of breath (dyspnea)
  • Skipped heartbeats
  • Sleep arousal
  • Slow pulse / flip-flop palpitations / skipped heartbeats
  • Sneezing
  • Sudden cardiac arrest syndromes
  • Sore legs

Thrombo Diagnosis

  • History: fluttering / flip-flop palpitations, night sweats with racing heartbeats, insomnia, panic attacks with choking, coughing, sneezing with shortness of breath, chronic fatigue, chronic bronchitis, ‘flu’ syndrome, fast weak irregular heartbeat  / slow strong 'pounding' heartbeats, peripheral neuropathy
  • Physical Examination: slow strong ventricular heartbeats mixed with fast weak atrial heartbeats, soft musical grade I – II systolic murmur, mild fever
  • Pulse Oximetry: oxygen desaturation events, elevated peripheral carboxyhemoglobin in sore extremities with phlebitis & peripheral neuropathy
  • Electrocardiogram: premature atrial beats, atrial flutter / fibrillation, premature ventricular beats, tachy-brady / brady-tachy / sick sinus syndrome
  • Echocardiogram: pulmonary valve insufficiency / tricuspid valve regurgitation
  • Arterial Blood Gas (ABG): elevated carbon dioxide saturation (hypercapnea), low oxygen saturation, elevated carboxyhemoglobin
  • Capnography: end tidal expired carbon dioxide decrease corresponds to oxygen desaturation events

Treatment / Prevention of Bloody Clots

  • Eight hours of rest / sleep every night (decreases metabolic acidosis)
  • Avoid excess drug and alcohol use
  • Maintain adequate water intake, avoid exercise-induced dehydration
  • Diet & Nutrition: control how much and what you eat
  • Moderate aerobic exercise: golf, sex, bowling, gardening, walking, yoga, tai chi
  • Sequential venous compression treats & prevents blood clots
  • Ultrasound: helps resolve inflammation and phlebitis
  • Vibration exercise oscillates bloody clots out of heart valves

What do doctors know about carboxyhemoglobin, or the long QT?

Thrombo dextrocardia is a new theory that explains how VTE interfere with blood flow at the triscupid and pulmonary valves, which causes the tachy-brady rhythm of the sick sinus syndrome.

Blood flow generates the electric waves of the ECG. Blood clots alter blood flow, and altered blood flow causes PAC and PVC. The ECG can diagnose blood clots in the heart valves.

  • Blood flow / cardiac contractions generates the waves of the ECG.
  • Peristaltic contractions of the aorta and pulmonary artery create the T wave.
  • The downward outward bulging of the apex of the ventricles at the start of systole create Q waves.
  • Thrombo dextrocardia at the pulmonary valve causes the "long QT" syndrome.
  • Old depolarization and repolarization ECG theories need to be updated.

Thrombo Future: The importance of pulse oximeter / ECG discoveries:

  • First, the pulse oximeter can diagnose skipped heartbeats.
  • Next, the ECG can diagnose blood clots in the heart valves (thrombo cardia)
  • Third, the pulse oximeter measures carboxyhemoglobin.
  • Venous acidosis increases carboxyhemoglobin.
  • Carboxyhemoglobin evaluates decreased venous blood flow.
  • Carboxyhemoglobin is a circulating biomarker of poor blood flow.
  • Poor venous blood flow causes venous hemothrombosis.
  • Blood clots at the pulmonary valve cause skipped heartbeats called PVC.
  • Skipped heartbeats lead to fainting, anoxic convulsions, and sudden cardiac arrest.
  • ECG applications on cell phones can evaluate PVC.
  • ECG apps can emit warning signals during consecutive PVC.
  • Cell phones can diagnose skipped heartbeats and predict grand mal anoxic seizures.
  • Detritus (PE) causes desaturation, hypercapnea and narcolepsy.
  • Cell phone apps can measures oxygen saturation events.
  • Cell phone monitors can predict narcolepsy and emit warning signals.
  • Airline pilots, truck drivers, and train engineers can use cell phone monitors to avoid accidents caused by mysterious narcolepsy (detritus) or skipped heartbeats (PVC).
  • We can all improve our life style and become happier as brain fog fades away.
  • Thank you for being curious and find joy in your journey as you learn more about blood clots.
 

 

All Rights Reserved © 2012 Bodensteiner Medical Research