Bodensteiner Medical Research
| |
| | | |

Welcome to Thrombo.Info
by Dr Bode


Wiggle, wiggle;


Flip-flop splat!

I wonder what is wrong with me?

Maybe I’m too fat?


Do you ever lie awake at night and wonder what makes the healthy heart flip and flop like a fish out of water? Suddenly the heart flutters like a humming bird and then slows down with powerful pounding palpitations that cause hot flashes or night sweats.

Sick patients with coughing, nausea, and flu symptoms often develop fast fluttering jugular pulsations in the neck that are followed by slow strong flip-flop palpitations that are felt inside the chest. Heart doctors call this pattern the tachy-brady rhythm of the sick sinus syndrome.

Patients with the tachy-brady rhythm suffer brain fog, confusion, weakness, light-headed dizzy spells, and sometimes develop fainting spells and anoxic epileptic convulsions.

No one seems to understand what causes the heart to suddenly beat fast or slow; and not much really matters to us unless it changes our financial condition or romantic relationships. No one cares too much about palpitations or the "sick sinus syndrome" until he or she ends up in the ICU with a fast or slow heart rate following a long night of drinking and dancing coupled with lack of sleep.

The purpose of this website is to explain a new theory called "Thrombodextrocardia", which means venous thromboemoblism (VTE) in the heart. Blood clots inside the heart valves cause palpitations and change the heart rhythm by interfering with blood flow through the heart valves. There is evidence that VTE in the heart causes the idiopathic sick sinus syndrome!



 DVT and Pulmonary Embolism

Thrombo Dextro Cardia

Doctor, doctor tell me please.

What makes me cough or why I sneeze?

When I walk or roller skate,

My hearts starts to palpitate.

It hops around with a flip and a flop.

I pray to God it doesn't STOP!

The Interpretation of the Electrocardiogram: Blood flow generates electric potentials

The electrocardiogram (ECG) was discovered in 1903 by Dr Einthoven and it has three important waves, which are interpreted by cardiologists. The waves are called P, QRS, and T, and cell depolarization or repolarization during the heartbeat explains these waves.

But wait!

There seems to be a fundamental misunderstanding of the ECG (EKG). The electric waves of the heart move extremely fast, near the speed of light, which is 186,000 miles per second. The speed of events blurs the vital sign electrical evidence, which is amplified and recorded by the ECG.

The heartbeat takes place during one second of time, which equals one thousand milliseconds, and no one can isolate and separate nerve action potential events from other simultaneous events. Cardiac muscle contractions generate electric friction potentials as blood flow causes water with electrolytes and red cells to rub against the walls of the atria, ventricles, and great arteries (aorta and pulmonary artery).

The electricity (potentials) of the electrocardiogram seems to be generated by blood flow!

Two atrial contractions generate the P wave, two ventricular contractions generate the QRS wave, and two arterial contractions (aorta and pulmonary artery) generate the electric potential recorded as the T wave opf the ECG.

The heartbeat generates friction electric potentials in the heart in the same way that fast flowing air in dark clouds full of water droplets generate electric potentials that become lightning in the sky.

The heartbeat transmits electric potentials to the arms, legs and chest, which are recorded using wires connected to the ECG machine.

Cell depolarization and repolarization occur as cardiac contractions generate blood flow and post hoc propter ergo hoc explains how doctors misunderstand the origin of normal and abnormal waves of the electrocardiogram (ECG).

Abnormal waves of the ECG include premature atrial contractions (PAC) and premature ventricular contractions (PVC). The ECG makes more sense if blood flow generates ECG potentials. Thus, VTE alters blood flow through the tricuspid or pulmonary valves, which explain PAC or PVC. VTE in the tricuspid valve causes PAC; and VTE in the pulmonary valve causes PVC.

Moreover, there appears to be pulse oximeter evidence involving carboxyhemoglobin that a direct connection exists between VTE and palpitations and arrhythmias of the heart.

Carboxyhemoglobin: carbon monoxide hemoglobin saturation

Patients with with phlebitis and deep venous thrombosis (DVT) in their legs have elevated carboxyhemoglobin (CO in hemoglobin / SpCO) levels in their toes.

Sequential venous leg compression of sore legs with elevated SpCO above 10% changes the ECG and causes palpitations, whereas compression of normal legs with 0 to 1% SpCO causes no arrhythmias or palpitations.

There appears to be a direct connection between VTE and palpitations and arrhythmias of the heart. VTE alters blood flow, and a new interpretation of the ECG based on blood flow electric potentials explains how VTE causes the tachy-brady rhythm called the sick sinus syndrome. 


  • There are no established relationships between VTE, arrhythmias, or desaturations,
  • There is no relationship between VTE and the sick sinus syndrome
  • There is no established relationship between VTE and SpCO
  • There is no established relationship between blood flow and ECG potentials

Thrombophysiology by Dr Bode






Dr Rudolf Virchow discovered around 1859 during autopsy that blood clots in the lungs were the same as blood clots in the legs. He theorized that pieces of clot in the legs broke loose, and moved through venous circulation into the lungs. Virchow called this process embolia.

Virchow noticed that stasis led to the formation of clots; and hemostasis is the main basis that stimulates blood to coagulate into sticky purple gel called detritus that hardens over time into a blood clot called a thrombus.

But why does hemostasis leads to hemothrombosis (blood clots)? Hemostasis changes metabolism from aerobic into anaerobic metabolism, which generates metabolic acid. Professor Louis Pasteur discovered anaerobic milk metabolism produced lactic acid in 1857.

Dr Pasteur discovered that anaerobic germ metabolism of milk sugar produced sour milk. Lactic acid denatures milk protein, which coagulates into cheese and the lactic acid makes the milk taste sour. Lactic acid in the blood from anaerobic muscle metabolism denatures blood protein, which activates the blood coagulation process that changes red blood cells into blood clots.

Venous lactic acid from anaerobic metabolism causes venous blood to transform into purple gel, composed of water, proteins, platelets, and red blood cells. This soft gel called detritus forms an outer membrane and becomes a blood clot called a thrombus, which adheres to the inner walls of veins inside muscles and causes phlebitis.

Blood clots have a life cycle that starts inside muscles as deep venous thromboses (DVT). Later, pieces of DVT clot break loose and migrate out of sore legs during walking or exercise. These migrating clots are semisolid and become venous thromboembolisms (VTE). VTE circulate through the right heart where they interfere with blood flow at the tricuspid valve, at the pulmonary valve, and at the esophagus where the pulmonary artery compresses the esophagus in front of the spine behind the heart. Finally, VTE stop in the lungs, where they become pulmonary embolisms (PE).

Venous blood clots cause pathology and change vital signs.

First, DVT weaken sore muscles, which become warm, swollen, and red with increased carboxyhemoglobin in the toes, which is a biomarker of venous vascular congestion and hemostasis.

Next, VTE inside the heart (thrombo dextro cardia) cause arrhythmias and palpitations. VTE at the tricuspid valve cause premature atrial contractions (PAC), with fluttering jugular palpitations (pulsus reversus); and VTE at the pulmonary valve cause premature ventricular contractions (PVC) with pulsus interruptus (skipped heartbeat / pulse deficits) and flip-flop palpitations. Thrombodextrocardia causes the tachy-brady rhythm of the sick sinus syndrome; and furthermore, consecutive skipped heartbeats cause fainting, anoxic convulsions, and sudden death syndromes.

Next, VTE migrate into the pulmonary artery and irritate the esophagus. Pulsating clots cause nausea, burping, difficulty talking or swallowing; and burping while sleeping causes gastro esophageal reflux (GERD).

Finally, VTE flow into the lungs, where they stop and become pulmonary embolisms (PE). Detritus, which is partly clotted blood, interferes with respiration in the alveoli, which causes exercise-induced asthma. This prevents the absorption of oxygen and the exhalation of warm moist vapor full of carbon dioxide. Pulmonary malfunction causes desaturation, hypercapnea, and hyperthermia, which often lead to panic attacks, hot flash fevers, night sweats, narcolepsy, and rare anaphylactic suffocation.

The Life Cycle of Blood Clots is full of arrhythmias and idiopathic syndromes

  1. First, DVT (deep venous thrombosis) usually form inside muscles and cause inflammation. Muscles become sore, swollen, weak, warm, and red. Walking causes pieces of DVT to break loose and migrate into venous circulation, where they become venous thromboembolism (VTE).
  2. VTE move into the right atrium of the heart, where they interfere with blood flow at the tricuspid heart valve, which causes premature atrial contraction (PAC), and the obstructed valve forces blood to regurgitate upwards into the jugular vein during fast atrial contractions called atrial flutter. This  process is thrombodextracardia pulsus reversus, and the fast heart rate is thrombotachycardia.
  3. Next, VTE move into the right ventricle and obstruct blood flow through the pulmonary valve, which causes a premature ventricular contraction (PVC). PVC delays ventricular blood flow out of the heart, which changes the QRS of the ECG. The heart skips a beat (pulse) and this process is called thrombodextracardia pulsus interruptus, and the slow heartbeat is thrombobradycardia.
  4. VTE move into the pulmonary artery, and squeeze around the esophagus, which is located in front of the spine and behind the heart and pulmonary artery. Pulsating clots inside the pulmonary artery physically compress and irritate the esophagus, which causes nausea, burping, difficulty talking or swallowing. At night, burping while asleep causes gastro esophageal reflux (GERD).
  5. Finally, VTE moves into pulmonary alveoli and becomes pulmonary embolism (PE). Detritus  interferes with respiration and causes "circulatory" asthma. Furthermore, detritus and PE prevent the absorption of oxygen or the exhalation of warm moist vapor full of carbon dioxide, which causes oxygen desaturation, hypercapnea, and hyperthermia. These cause panic attacks, fever, narcolepsy, hot flashes, night sweats, and rare anaphylactic suffocation.

Clots cause bigeminy with pulse deficits, palpitations, and more



It is theorized that compression of sore legs pumps DVT that are the size and shape of a golf pencil into venous circulation. These soft clots look like small purple worms, which migrate into the heart where they alter blood flow at the pulmonary valve and cause an ECG pattern called bigeminy.

Cardiac physiology has multiple simultaneous covariant processes going on during one second of time during the heartbeat. Please take time to focus attention on one thing at a time, and become familiar. Later study the next item. Gradually, you will 'see' the whole picture, which is the Gestalt.

First, focus on blood flow, which cause electric waves of the electrocardiogram (ECG).

Cardiac contractions / muscle / blood flow friction generates electic potentials that make up normal and abnormal waves of the electrocardiogram (ECG). Blood clots change blood flow at the heart valves, which stimulates premature heartbeats that are recorded by the ECG.

For example, VTE at the pulmonary valve reduce blood flow out of the right ventricle, which stimulates a premature ventricular contraction. The pulmonic valve closes down on the clot and the right ventricle develops a rotating isometric contraction that alters the normal QRS electric potentials of the heartbeat. The ECG pattern changes from a narrow wave called NSR (normal sinus rhythm) into a tall wide bifid QRS wave called PVC (premature ventricular contraction).

Second, focus on the pressure inside the right ventricle which triggers a cardiac reflex.

As the clot goes through the pulmonary valve, it reduces blood flow out of the right ventricle which causes a premature rise of pressure inside the ventricle, which triggers a premature contraction of the right ventricle, which prevents fatal distention of the ventricle, which causes fibrillation.

Next focus on the muscular contraction during PVC. The premature contraction causes the valve to close and grip the nose of the clot as the right ventricle develops an isometric rotating contraction that ruptures the neck of the sac sack that is held by the closed valve. The clot ruptures, which releases sticky detritus and decompresses the clot and reopens the pulmonary valve, which allows a normal sinus rhythm (NSR) heartbeat that pumps extra blood, clot sac, and detritus into the pulmonary artery.

Refocus on the clot. Because the clot is long, the trailing part of the clot re-obstructs the valve, which causes a second PVC. The second PVC causes the valve to grip the middle of the clot, which causes a second rotating isometric contraction which extends the rupture of the clot all the way to its tail, which decompresses the clot and reopens the valve. Another normal sinus rhythm heartbeat ( NSR) pumps blood plus the empty clot sac out of the valve into the pulmonary artery.

The ECG pattern is NSR / PVC / NSR / PVC / NSR and the heartbeat skips every other pulse during bigeminy because of isometric non-perfusing PVC as the clot obstructs the pulmonary valve.

Next focus on blood flow sounds of the heart during ventricular bigeminy. If you listen to the heart with a stethoscope during bigeminy, you can hear a soft variable grade I - II systolic murmur at the pulmonary valve as the clot passes through the valve.

Next, focus on detritus, which is released from the clot rupture and migrates into the alveoli, where the detritus gums up the capillaries, which temporarily prevents the absorption of oxygen during inspiration and stops the exhalation of warm moist vapor full of carbon dioxide during exhalation.

Pulmonary detritus causes a delayed (ten to twenty seconds) oxygen desaturation event. It also causes hypercapnea (elelvated carbon dioxide) and hyperthermia (fever). Elevated carbon dioxide causes narcolepsy and hyperthermia stimulates vasodilatation and sweating (hot flash).

Finally think about sensations of palpitations. During bigeminy, the right ventricle enlarges during its rotating isometric contraction and the left ventricle decompresses by pumping out a small volume of blood. The heart "flips" to the left during PVC and flops back to the right after the clot ruptures which allows normal sinus rhythm (NSR) to pump out the ruptured sac plus extra blood.

The heart repeats its "flip-flop" process during the second PVC, which is followed by a second normal sinus contraction (NSR). Powerful pounding sensations occur because the ventricle pumps with more force to expel clot debris and extra blood following PVC.

Next focus on the pulse rate. The pulse slows down as the heart skips every other pulse during bigeminy so that the pulse rate during thrombobradycardia is one half of the speed of normal sinus rhythm.

Patients press the button on the holter monitor during bigeminy and write down "flip-flop" palpitation on the record sheet because clots cause strong rotating isometric contractions that are followed by extra strong beats that are needed to expel clot, debris and extra blood out of the right ventricle.

The Gestalt is the whole picture

It takes time to understand how associated events are connected, so focus on one thing and then another, and take time to "see" the whole picture.

Ventricular Bigeminy

Gradually, "see" how an elongated soft purple thrombus initially sticks its nose inside the pulmonary valve opening of the outflow tract of the right ventricle. The clot causes PVC that is followed by a rotating isometric contraction of the right ventricle that ruptures the neck of the clot, which release detritus and deompresses the upper part of the clot sac. A normal sinus contraction pumps the decompressed sac through the valve. Next, the remaining clot sac full of bloody glue re-obstructs the valve causing a second PVC with another rotating isometric contract, which extends the rupture of the clot sac all the way to its tail, which releases more sticky purple detritus. This is followed by a normal sinus rhythm contraction, which pumps the remaining clot sac into the lungs. The bloody glue gums up alveoli, which causes an oxygen desaturation event and stops the exhalation of warm moist vapor, which causes narcolepsy.

Thrombophysiology is complicated, so take time to "see" the Gestalt and find joy in your journey as you learn how blood clots cause palpitations and change the electric pattern of the ECG.

More about the electrocardiogram and electric potentials during the heartbeat

The heart is composed of two pumps intimately connected like Siamese twins.

  • Two pumps have six connected pumping parts,
  • These parts include two atria, two ventricles, and two great arteries,
  • Four one-way reciprocating valves connect six pumping parts.
  • Three connected pairs of pumps have sequential synchronized rhythmic contractions,
  • First: two atria contract together and fill up the ventricles,
  • Next: two ventricles contract together and fill up two great arteries, and
  • Last: two great arteries contract and pump blood away from the heart.

Dr. Einthoven discovered in 1903 that the heartbeat generates electricity.

  • The heartbeat electrocardiogram (ECG) has three waves: P, QRS, and T.
  • Action potential depolarization / repolarization explain ECG physiology.
  • However, electric action potentials move at the speed of light, which blurs the evidence.

Sequential contractions by different parts of the heart generate distinct electric potentials that dissipate and create electric waves of the electrocardiogram (ECG) during each heartbeat.

First, two atria contract together and create the P wave.

Next, two ventricles contract together and create the QRS wave.

Last, the aorta and pulmonary artery contract together and pump blood away from the heart, which creates the T wave.

Blood flow generates the electric waves of the ECG and blood clots alter blood flow through the heart valves, which changes the ECG pattern.

The "heartbeat" starts with the SA node, AV node and conduction fibers; and this neuromediated pacemaker system initiates coordinated contractions of the atria, and facilitates simultaneous "reverse peristaltic" contractions of the ventricles, which are followed by normal peristaltic contractions of the aorta and pulmonary arteries.

The T wave of the ECG is created by contraction of the aorta and pulmonary artery!

The bottom (apex) of the ventricles contract at the start of systole, as the heart pumps blood "up" towards the aortic and pulmonary valves. Pathological Q waves are caused by the downward outward bulging of the apex of the ventricles at the start of systole. This is "takotsubo" of the broken heart syndrome.

VTE in the pulmonary valve alters blood flow, which alters the ECG and causes the long QT!

"All truths are easy to understand once they are discovered; the point is to discover them."  Galileo

Thrombo Theory Questions & Answers:

  • What makes the heart skip a beat? VTE at the pulmonary valve causes PVC with pulse deficits.
  • How does a blood clot (thrombus) cause the heart to skip a beat? It interferes with blood flow through the pulmonary valve.
  • What causes blood to form clots? Abnormal metabolism produces acid, which denatures protein, which causes blood to coagulate.
  • Why does abnormal anaerobic (hypoxic) metabolism make lactic acid? Metabolism without oxygen produces lactic acid; and Dr Pasteur made this discovery when he studied germ metabolism of milk.
  • Why does cancer cause clots? Abnormal cancer cell metabolism produces lactic acid; and Dr Otto Warburg made this discovery when he studied cancer cell glucose metabolism.
  • Why do runners get clots? Anaerobic muscle metabolism produces lactic acid which causes blood clots; and Dr Otto Meyerhof made the discovery that anaerobic muscle metabolism produces lactic acid.
  • How does lactic acid activate the blood clotting mechanism? Acid denature protein in the blood, which becomes like velcro, which causes red blood cells to coagulate with platelets and form clots.
  • What makes blood clots migrate (embolize) into heart valves? Exercise or walking squeezes clots out of sore veins (DVT) into circulation that goes into the heart.
  • What happens to the heart rhythm as clots pass through different heart valves? VTE at the tricuspid valve causes tachcardia and VTE at the pulmonary valve cause bradycardia.
  • Do blood clots cause fluttering or flip flop palpitations? Yes.
  • Why do arrhythmias cause low blood pressure with lightheaded dizzy spells? VTE reduces the ejection fraction, which reduces blood pressure and causes lightheaded dizzy spells.
  • Does partly clotted blood called detritus interfere with breathing? Yes.
  • How does bloody debris (detritus) cause exercise-induced asthma? Detritus adds liquid glue into the lungs which causes temporary swelling and reduces air flow into tiny alveoli.
  • How do blood clots cause coughing, nausea, gagging and sneezing? VTE inside the pulmonary artery accumulate at the junction where the artery passes in front of the spine. The esophagus touches the back of the heart and pulsating VTE in the artery choke the esophagus causing difficulty swallowing or talking, coughing, gagging, nausea, and sneezing.
  • Do blood clots or detritus cause panic attacks or internal suffocation? Yes.
  • Do blood clots cause pulseless fainting? Yes.
  • How do blood clots cause epileptic seizures? VTE at the pulmonary artery stops the flow of blood into the brain and lungs, which triggers an anoxic convulsion.
  • How do blood clots cause sudden thrombocardiac arrest? VTE obstruct the pulmonary valve, which stops cardiac output.
  • How does CPR reanimate someone with cardiac arrest without defibrillation? CPR expels clot out of the obstructed valve, which reopens blood flow into the brain and lungs, which reverses acidsosis and reanimates the person suffering a thrombocardiac arrest.

Thrombo Associated Diseases:

  • Cancer → lactic acid → blood clots (Warburg effect)
  • Carbon monoxide poisoning: night time hypoxemia → carboxyhemoglobinemia
  • Chronic Fatigue Syndrome
  • Congestive heart failure: right heart failure, valve malfunction, low ejection fraction
  • Exercise-induced asthma: pulmonary embolism (PE) of detritus
  • Infection: anaerobic germ metabolism muscle: glucose → lactic acid → blood clots
  • Injuries: foot, leg, knee, or hip injury → blood clots
  • Gastro esophageal reflux disease (GERD): emboli in pulmonary artery compress  the esophagus between heart and vertebra, stimulates burping during sleep → GERD 
  • Headaches: pulmonary detritus ↓ water exhalation → brain edema, headache
  • Insomnia: PE at tricuspid valve → thrombotachycardia → sleep arousal 
  • Macular degeneration: micro emboli
  • Malignant hyperthermia: PE → atelectasis, fever, VTE arrhythmias
  • Migraine headaches
  • Narcolepsy: PE detritus → ↓ exhalation of CO2 → hypercapnea → CO2 narcosis
  • Panic attacks: PE of detritus, desaturation, dyspnea
  • Peripheral neuropathy: venous vascular acidosis → neuropathy, restless leg
  • Pleurisy: PE into alveoli causes sharp ischemic pain
  • Pre-menstrual syndrome: PE of detritus, hot flashes, headache (edema), mild fever
  • Pyriformis syndrome: compartment syndrome, venous acidosis
  • Seizures: VTE at pulmonary valve, sudden hypoxia, convulsions perform CPR
  • Sick Sinus Syndrome: VTE at tricuspid and pulmonary valves
  • Sleep apnea: PE detritus → internal hypercapnea with central CNS depression
  • Syncope: short runs of continuous skipped beats, VTE at pulmonary valve
  • Tinnitus: emboli of detritus into sensitive area of inner ear

Thrombo Symptoms

  • Anxiety, panic attacks
  • Brain Fog
  • Bradycardia
  • Choking
  • Coughing
  • Confusion
  • Depression
  • Dizzy spells
  • Dyspnea (short of breath)
  • Exercise-induced asthma
  • Fainting
  • Fatigue
  • Fear of sudden death
  • Fever (seizure fevers, night sweats, hot flashes, malignant hyperthermia)
  • Fluttering fast weak jugular palpitations
  • Flip-flop pounding slow strong palpitations
  • Gagging
  • Headaches
  • Hot flashes
  • Insomnia with fast racing heartbeats
  • Irregular pulse
  • Irritability
  • Phlebitis
  • Premature beats
  • Light-headed sensations
  • Muscular dystrophy
  • Nausea
  • Night sweats
  • Palpitations
  • Panic Attacks
  • Racing heartbeat
  • Restless leg
  • Seizures / grand mal unconscious convulsions
  • Shortness of breath (dyspnea)
  • Skipped heartbeats
  • Sleep arousal
  • Slow pulse / flip-flop palpitations / skipped heartbeats
  • Sneezing
  • Sudden cardiac arrest syndromes
  • Sore legs
  • Tachycardia

Thrombo Diagnosis

  • History: fluttering / flip-flop palpitations, night sweats with racing heartbeats, insomnia, panic attacks with choking, coughing, sneezing with shortness of breath, chronic fatigue, chronic bronchitis, ‘flu’ syndrome, fast weak irregular heartbeat  / slow strong 'pounding' heartbeats, peripheral neuropathy
  • Physical Examination: slow strong ventricular heartbeats mixed with fast weak atrial heartbeats, soft musical grade I – II systolic murmur, mild fever
  • Pulse Oximetry: oxygen desaturation events, elevated peripheral carboxyhemoglobin in sore extremities with phlebitis & peripheral neuropathy
  • Electrocardiogram: premature atrial beats, atrial flutter / fibrillation, premature ventricular beats, tachy-brady / brady-tachy / sick sinus syndrome
  • Echocardiogram: pulmonary valve insufficiency / tricuspid valve regurgitation
  • Arterial Blood Gas (ABG): elevated carbon dioxide saturation (hypercapnea), low oxygen saturation, elevated carboxyhemoglobin
  • Capnography: end tidal expired carbon dioxide decrease corresponds to oxygen desaturation events

Treatment / Prevention of Bloody Clots

  • Eight hours of rest / sleep every night (decreases metabolic acidosis)
  • Avoid excess drug and alcohol use
  • Maintain adequate water intake, avoid exercise-induced dehydration
  • Diet & Nutrition: control how much and what you eat
  • Moderate aerobic exercise: golf, sex, bowling, gardening, walking, yoga, tai chi
  • Sequential venous compression treats & prevents blood clots
  • Ultrasound: helps resolve inflammation and phlebitis
  • Vibration exercise oscillates bloody clots out of heart valves

What do doctors know about carboxyhemoglobin, or the long QT?

Thrombodextrocardia is a new theory that explains how VTE interfere with blood flow at the triscupid and pulmonary valves, which causes the tachy-brady rhythm of the sick sinus syndrome.

Blood flow from cardiac contractions generates the electric waves of the ECG. Blood clots alter blood flow, and altered blood flow causes PAC and PVC. The ECG can diagnose blood clots in the heart valves.

  • Blood flow / cardiac contractions generates the waves of the ECG.
  • Peristaltic contractions of the aorta and pulmonary artery create the T wave.
  • The downward outward bulging of the apex of the ventricles at the start of systole create Q waves.
  • Thrombo dextrocardia at the pulmonary valve causes the "long QT" syndrome.
  • Old depolarization and repolarization ECG theories need to be updated.

Thrombo Future: The importance of pulse oximeter / ECG discoveries:

  • First,  the ECG can diagnose blood clots in the heart valves.
  • Next, the pulse oximeter can diagnose skipped heartbeats.
  • Third, venous acidosis increases carboxyhemoglobin (SpCO).
  • Carboxyhemoglobin evaluates venous blood flow.
  • SpCO is a circulating biomarker that detects poor blood flow.
  • Poor venous blood flow causes hemothrombosis (DVT, VTE, PE).
  • The pulse oximeter locates blood clots and monitors DVT therapy.
  • Blood clots in the pulmonary valve cause skipped heartbeats called PVC.
  • Consecutive skipped beats cause fainting, convulsions, and cardiac arrest.
  • ECG applications on cell phones evaluate PVC.
  • ECG apps can be used to emit warning signals during consecutive PVC.
  • Nex, detritus (PE) causes desaturation, hypercapnea, and narcolepsy.
  • Cell phone apps measure oxygen desaturation that leads to narcolepsy.
  • Narcolepsy monitors can be used to emit warning signals.
  • Cell phone apps can be used by airline pilots, engineers, or truck drivers to avoid accidents from natural VTE events that cause narcolepsy (detritus) or skipped heartbeats (PVC).
  • We can all improve our life style and become happier as brain fog fades away.
  • Thank you for your interest and find joy in your journey as you study blood clots.


All Rights Reserved © 2012 Bodensteiner Medical Research